Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich's ataxia.
نویسندگان
چکیده
Friedreich's ataxia is a neurodegenerative disease caused by reduced expression of the mitochondrial protein frataxin. The main phenotypic features of frataxin-deficient human and yeast cells include iron accumulation in mitochondria, iron-sulphur cluster defects and high sensitivity to oxidative stress. Glutathione is a major protective agent against oxidative damage and glutathione-related systems participate in maintaining the cellular thiol/disulfide status and the reduced environment of the cell. Here, we present the first detailed biochemical study of the glutathione-dependent redox status of wild-type and frataxin-deficient cells in a yeast model of the disease. There were five times less total glutathione (GSH+GSSG) in frataxin-deficient cells, imbalanced GSH/GSSG pools and higher glutathione peroxidase activity. The pentose phosphate pathway was stimulated in frataxin-deficient cells, glucose-6-phosphate dehydrogenase activity was three times higher than in wild-type cells and this was coupled to a defect in the NADPH/NADP(+) pool. Moreover, analysis of gene expression confirms the adaptative response of mutant cells to stress conditions and we bring evidence for a strong relation between the glutathione-dependent redox status of the cells and iron homeostasis. Dynamic studies show that intracellular glutathione levels reflect an adaptation of cells to iron stress conditions, and allow to distinguish constitutive stress observed in frataxin-deficient cells from the acute response of wild-type cells. In conclusion, our findings provide evidence for an impairment of glutathione homeostasis in a yeast model of Friedreich's ataxia and identify glutathione as a valuable indicator of the redox status of frataxin-deficient cells.
منابع مشابه
Frataxin Silencing Inactivates Mitochondrial Complex I in NSC34 Motoneuronal Cells and Alters Glutathione Homeostasis
Friedreich's ataxia (FRDA) is a hereditary neurodegenerative disease characterized by a reduced synthesis of the mitochondrial iron chaperon protein frataxin as a result of a large GAA triplet-repeat expansion within the first intron of the frataxin gene. Despite neurodegeneration being the prominent feature of this pathology involving both the central and the peripheral nervous system, informa...
متن کاملThe mitochondrial protein frataxin prevents nuclear damage.
The mitochondrial protein frataxin helps maintain appropriate iron levels in the mitochondria of yeast and humans. A deficiency of this protein in humans causes Friedreich's ataxia, while its complete absence in yeast (Delta yfh1 mutant) results in loss of mitochondrial DNA, apparently due to radicals generated by excess iron. We found that the absence of frataxin in yeast also leads to nuclear...
متن کاملThe yeast frataxin homolog Yfh1p plays a specific role in the maturation of cellular Fe/S proteins.
The mitochondrial matrix protein frataxin is depleted in patients with Friedreich's ataxia, the most common autosomal recessive ataxia. While frataxin is important for intracellular iron homeostasis, its exact cellular role is unknown. Deletion of the yeast frataxin homolog YFH1 yields mutants ((Delta)yfh1) that, depending on the genetic background, display various degrees of phenotypic defects...
متن کاملFrataxin deficiency alters heme pathway transcripts and decreases mitochondrial heme metabolites in mammalian cells.
Deficiency of the frataxin mRNA alters the transcriptome, triggering neuro- and cardiodegeneration in Friedreich's ataxia. We microarrayed murine frataxin-deficient heart tissue, liver tissue and cardiocytes and observed a transcript down-regulation to up-regulation ratio of nearly 2:1 with a mitochondrial localization of transcriptional changes. Combining all mouse and human microarray data fo...
متن کاملMutation in the Fe-S scaffold protein Isu bypasses frataxin deletion.
Frataxin is a conserved mitochondrial protein deficient in patients with Friedreich's ataxia. Frataxin has been implicated in control of iron homoeostasis and Fe-S cluster assembly. In yeast or human mitochondria, frataxin interacts with components of the Fe-S cluster synthesis machinery, including the cysteine desulfurase Nfs1, accessory protein Isd11 and scaffold protein Isu. In the present p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 17 18 شماره
صفحات -
تاریخ انتشار 2008